Ajay Vallabh, Ph.D.

Ajay.Vallabh@unh.edu **2** +1-6038669680 https://www.linkedin.com/in/ajay-vallabh/

Summary Statement

As a mechanical engineering graduate, I bring six years of teaching and research expertise in computational modeling and experimental design, particularly in molecular dynamics, material characterization, polymer mechanics, phase separation, and computational fluid dynamics. With experience instructing over 500 students, I am eager to transition into a faculty role, driven by a passion for academia.

in ajay-vallabh

Professional Experience

Research Assistant UNH, Durham, NH.		20 hours/week.
Cell growth in elastic network, Project	June-23-Present	
* A phase separation model is built for cells with a cross-linked polymer network by usi	ng molecular dyna	mics (MD).
* Analytical: Analyze data to observe how the stiffness and cross-link density of the poly	ymer network affec	ct cell growth.
* Guide: As a senior researcher, I also trained two master's and four undergraduate stud	lents on MD softwa	are (LAMMPS).
Teaching Assistant UNH, Durham, NH.		20 hours/week.
Course	Students	
Experimental Measurement and Data Analysis, ME646	80	Jan-May-2023
* Guide UG students to perform static and dynamic experiments based on the		
concepts of mechanics, thermodynamics, and fluid mechanics with data analysis.		
Intro to Engineering Design, ME441	75	Aug-Dec-2022
* Conduct a SOLIDWORKS software lab; facilitate engineering design tutorials.		
* Guide UG student groups for engineering design and manufacturing projects.		
(Example: water purifier design, flexible furniture design, etc.); lab report grading.		
Introduction to Material Science, ME561 (Two-term)	85	Jan-May-2022
* Conduct recitations to provide conceptual knowledge of material science.		& 2021
* Conduct office hours with 85 students on a one-on-one basis to provide feedback.		
Intro to Engineering Computing, IAM550	85	Aug-Dec-2021
* Conduct a Matlab lab in four sessions to provide fundamental knowledge of		
numerical methods such as Gauss elimination, the LU algorithm, etc.		
Dynamics, ME627 (Two-term)	103	Aug-Dec-2020
* Conduct recitations to cover the numerical problems in dynamics.		& 2019
* Hold office hours with 103 students on a one-on-one basis to provide feedback.		
Heat and Mass Transfer, ME603	103	Dec-May-2020
* Conduct recitations to cover numerical problems of conduction and convection.		
Teaching Assistant IIT, Kanpur, UP, India.20	0 hours/week, H	Rs.12400/month.
Numerical Methods, ESO208	105	July-Nov-2018
* Conduct recitations to cover Python-based programming tutorials for algorithms s	uch	
as Gauss-Seidel, SIMPLE, etc.		
Fluid Mechanics, ME 231	95	Jan-Apr-2018
* Elucidate lab manuals to perform fluid mechanics experiments such as measuremen	nt of	
drag, boundary layer flow over a flat plate, etc.		
Energy System, ME301	95	July-Nov-2017
* Prepared course work slides (energy conversion calculations for systems such as		
I.C. engines, solar systems, power plants, etc. from a thermodynamics point of view).		

I.C. engines, solar systems, power plants, etc. from a thermodynamics point of view).

Education

May-2024	Ph.D. Mechanical Engineering, University of New H <i>Advisor: Prof. John Tsavalas</i>	ampshire, Durham, NH, USA. CGPA: 3.72/4.
June-2019	M.S. Mechanical Engineering, Indian Institute of Tec <i>Advisor: Prof. P.S. Ghoshdastidar</i>	c hnology Kanpur , India. CGPA: 8.0/10.
June-2015	B.Tech. Mechanical Engineering, GLA University , Ma Advisor: Prof. Kamal Sharma	athura, Uttar Pradesh, India. CGPA: 8.67/ 10

Machine Tool, Spectroscopy, & Microscopy

Deformation-Induced Bonding (DIB), Universal Testing Machine (Instron 5969 UTM), Electric Discharge Machine (EDM), Differential Scanning Calorimeters (DSC), Dynamic Mechanical Analysis (DMA), Discovery Hybrid Rheometer (DHR-3), Elastomer 3580 Film Applicator, Ultraviolet-visible (UV-Vis), Nuclear Magnetic Resonance (NMR), Scanning Electron Microscope (SEM), X-ray diffraction (XRD)

Skills

Languages	Strong communication skills in English and Hindi.
Programming Languages	C, C++, Python, Fortran, Cmake.
Simulation Packages	LAMMPS (GPU,HPC), Marc-Mentat, Abaqus (FEA), SOLID WORKS, CAD
Computational Packages	MATLAB, Maple, Chemsketch, Adobe illustrator, OVITO.
Typesetting Software	LATEX, EXCEL, VIM, MS WORD.
Equipment Software	TRIOS (DHR3), BLUEHILL®UNIVERSAL (UTM), Thermal Advantage (DMA)

Coursework

Macromolecular Characterization, Introduction to polymer physics, , Finite Element Method, Machine learning, Numerical Methods, Sobolev space, Continuum Mechanics, Continuum & Plasticity, Viscous Flow Theory, Computational Fluid Dynamics, Hydrodynamic Stability, High Performance Computing, and Turbulence.

Research Publications

Journal Articles

- A. Vallabh and N. Padhye, "A review on polymer bonding through interdiffusion and role of deformation-acceleration," *To be submitted in RCS Advances.*,
- A. Vallabh and N. Padhye, "Dilatational-plasticity opens a new mechanistic pathway for macromolecular transport across polymeric interfaces yielding solid-state bonding," *To be submitted in Scientic Report (Submission Id 3535f887-1856-4ef9-8bf2-fo28e295d6bo)*, **O** URL: https://universitysystemnh-my.sharepoint.com/:b: /g/personal/av1110_usnh_edu/EQeCcqg-nLVChOGCyEOrBtwB8mwI5wQ-cqJi-vNaJAs2-Q?e=sy4qbo.
- A. Vallabh and J. Tsavalas, "Role of plasticizers in film formation and deformation-induced bonding of glassy polymers of bidisperse blends," *To be submitted in Macromolecules*, **O** URL: https://arxiv.org/abs/2405.11362v1.
- N. Padhye and A. Vallabh, "Deformation-induced bonding of polymer films below the glass transition temperature," *Journal of Applied Polymer Science*, vol. 138, no. 41, p. 50 934, 2021. *O* DOI: https://doi.org/10.1002/app.50934.
- A. Vallabh and P. Ghoshdastidar, "Numerical simulation of heat transfer in laminar natural convection of mixed newtonian-non-newtonian and pure non-newtonian nanofluids in a square enclosure," *Journal of Thermal Science and Engineering Applications*, vol. 13, no. 6, 2021. *Introductions*, vol. 11, no. 6, 2021.

Conference Proceedings

A. Vallabh and J. Tsavalas, "Mechanistic pathway of deformation-induced bonding at below-glass transition temperature in solid-state plasticized polymers," Gothenburg, Sweden: Seventh International Symposium Frontiers in Polymer Science, 2023. *O* URL: https://www.elsevier.com/events/conferences/frontiers-in-polymer-science.

A. Vallabh and J. Tsavalas, "Role of plasticization in macromolecular transport mechanism of deformation induced bonding (dib) in glassy polymers," Mount Holyoke College, South Hadley, MA, USA: Gorden research conference, 2023. **O** URL: https://www.grc.org/science-of-adhesion-grs-conference/2023/.

A. Vallabh and N. Padhye, "Mechanistic origins of low-temperature bonding in solid polymers," Los Angeles, California: 1st International Conference on Polymer Science and Engineering, 2022. *O* URL: https://polymers.unitedscientificgroup.org/2022/.

Research and Work Experience

Ph.D Research

Thesis title: Mechanism of deformation-induced bonding through dilatational plasticity in solid-state polymers.

- Experiment and Computation research experience in polymer-film bonding with a new, sustainable, deformationinduced bonding (DIB) technique, which can impact different applications' fabrication processes in prominent Multi-Billion \$ fields such as micro-fluidic, aerospace, pharmaceutical, soft robotics, textile, and packaging by transforming these processes into sustainable ones through the physics of DIB. (see J.Article[1])
- Hands-on experience with machine tools, spectroscopy, and microscopy, as mentioned above. For instance, I performed peel and lap shear tests on **UTM** (ASTM D882 standard) to measure the bonding strength. **DSC**, **DMA**, **XRD** tools were used for polymer material characterization. **SEM** was used to confirm the permanent bond fracture of polymer films. (see **J.Article[4]**)
- Established a mechanistic pathway for macromolecular transport in the deformation-induced bonding technique by using the **coarse-grained Kremer Grest model** through molecular dynamic simulations **(LAMMPS)**. I individually processed **four TB** of simulation data and discovered various space and time scales for deformation-based polymer dynamics. (see **J.Article[2]**)

Failure analysis of Tripod, Project

- Designed 3D model of tripod in SOLIDWORKS.
- Performed **FEA** analysis in SOLIDWORKS software for compressive load failure.

M.S Research

Thesis title: A Numerical Study of Heat Transfer Enhancement in Natural Convection of Newtonian and Non-Newtonian Nanofluids in a Square Enclosure.

- Developed a solid numerical and mathematical background in computational fluid dynamics (CFD) and heat and mass transfer to observe the natural convection phenomenon of non-Newtonian nanofluids in a square enclosure.
- Implemented the stream function vorticity algorithm to solve the non-linear Navier-Stokes equation using C++ code.
- Developed C++ code, and used Paraview software to observe isotherms and streamlines. (see J.Article[5])

B.Tech Research

Bachelor's Project: Optimization of Process Parameters of EDM for 3-Phase Carbon Fiber Composite Material.

- Performed an adequate number of experiments on EDM to optimize its parameters such as gap voltage (V_g), pulse on time (T_{on}), pulse off time (T_{off}), tool wear rate (TWR), material removal rate (MRR), etc.
- Both qualitative and quantitative optimization techniques, such as the Pugh rank method and the technique of order preference by similarity to the ideal solution (TOPSIS), were implemented to optimize parameters.

Awards and Scholarships

2023-2024	Dissertation year fellowship (24600\$), University of New Hampshire, USA.
2019-2023	Institute research assistantship, University of New Hampshire, USA.
Oct-2022	Bertram Husch International Scholarship (450\$), University of New Hampshire.
2017-2019	Institute research assistantship, Indian Institute of Technology, Kanpur, India.
Mar-2016	GATE 2016, Secured position among 1.5% of about 0.2 million candidates who appeared for GATE 2016
	(Graduate Aptitude Test in Engineering) in India.

Sep-2019-Present

Sep-2021-Dec-2021

Jan-2017-Aug-2019

Aug-2014-Jul-2015